940 resultados para Neuromuscular junction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

N'-coumaroyl spermidine (NlCSpd) is a plant derived chemical which is proposed to belong to a class of low molecular weight neuroactive substances called phenolic polyamines. NlCSpd is stnicturally similar to glutamate receptor blocking toxins found in certain spiders and wasps, such as JSTX-3 and NSTX-3 found in Nephila spiders. The goal of the present study was to determine if plant-derived phenolic polyamines act like other structurally related chemicals found in Arthropod venoms, such as JSTX-3, and whether they can be classified in the same pharmacological group as the spider and wasp toxins. A comparison was made to determine the relative potencies of various phenolic polyamines fi-om plants and insect venoms. This comparison was done by measuring the effect of various concentrations ofNlCSpd on the amplitude of excitatory postsynaptic potentials (EPSPs) elicited in muscle of the crayfish Proccanbarus clarkii. NlCSpd was also tested on L-glutamate induced potentials to determine if a postsynaptic component to sj^naptic block occurs. NlCSpd and an analogue with an a longer polyamine chain, NlCSpm, blocked EPSPs in a dose dependent manner, NlCSpd having an IC50 of lOOnM. NlCSpd also blocked L-glutamate induced potentials. The two main components of the NlCSpd molecule alone are insufficient for activity. NlCSpd acts postsynaptically by interfering with crayfish glutamatergic synaptic transmission, likely blocking glutamate receptors by interacting with the same site(s) as other phenolic polyamines. Certain moieties on the polyamines molecule are necessary for activity while others are not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene compensation by members of the myogenic regulatory factor (MRF) family has been proposed to explain the apparent normal adult phenotype of MyoD(-/-) mice. Nerve and field stimulation were used to investigate contraction properties of muscle from MyoD(-/-) mice, and molecular approaches were used to investigate satellite-cell behavior. We demonstrate that MyoD deletion results in major alterations in the organization of the neuromuscular junction, which have a dramatic influence on the physiological contractile properties of skeletal muscle. Second, we show that the lineage progression of satellite cells (especially initial proliferation) in the absence of MyoD is abnormal and linked to perturbations in the nuclear localization of beta-catenin, a key readout of canonical Wnt signaling. These results show that MyoD has unique functions in both developing and adult skeletal muscle that are not carried out by other members of the MRF family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein calcium sensors of the Homer family have been proposed to modulate the activity of various ion channels and nuclear factor of activated T cells (NFAT), the transcription factor modulating skeletal muscle differentiation. We monitored Homer expression and subcellular localization in human skeletal muscle biopsies following 60 d of bedrest [Second Berlin Bedrest Study (BBR2-2)]. Soleus (SOL) and vastus lateralis (VL) biopsies were taken at start (pre) and at end (end) of bedrest from healthy male volunteers of a control group without exercise (CTR; n=9), a resistive-only exercise group (RE; n=7), and a combined resistive/vibration exercise group (RVE; n=7). Confocal analysis showed Homer immunoreactivity at the postsynaptic microdomain of the neuromuscular junction (NMJ) at bedrest start. After bedrest, Homer immunoreactivity decreased (CTR), remained unchanged (RE), or increased (RVE) at the NMJ. Homer2 mRNA and protein were differently regulated in a muscle-specific way. Activated NFATc1 translocates from cytoplasm to nucleus; increased amounts of NFATc1-immunopositive slow-type myonuclei were found in RVE myofibers of both muscles. Pulldown assays identified NFATc1 and Homer as molecular partners in skeletal muscle. A direct motor nerve control of Homer2 was confirmed in rat NMJs by in vivo denervation. Homer2 is localized at the NMJ and is part of the calcineurin-NFATc1 signaling pathway. RVE has additional benefit over RE as countermeasure preventing disuse-induced neuromuscular maladaptation during bedrest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphological and structural alterations that occur in the neuromuscular junctions of the denervated rat diaphragm were studied. Fifteen adult male albino rats (Rattus norvegicus) aged about 60 days and with a mean weight of 200 g were used. Chronically denervated diaphragms were obtained and the animals were sacrificed after 4, 8 and 12 weeks of denervation. The left antimere of the diaphragm was denervated by section of the phrenic nerve and the right antimere was used as control. Each antimere was divided into three fragments: one was used for histochemical (nonspecific esterase) and morphometric study of neuromuscular junctions, and the other two were used for transmission and scanning electron microscopy (SEM) analysis. Histochemical analysis of the diaphragm neuromuscular junctions after denervation showed only small changes in junction morphology. However, these junctions became smaller and elongated and presented less visible contours with increasing time of denervation. Ultrastructural analysis of neuromuscular junctions after 12 weeks showed more or less organized junctional folds on the muscle fiber surface. The junctional cytoplasm exhibited important alterations such as mitochondrial degeneration and the presence of numerous filaments. SEM revealed the presence of deep primary synaptic grooves with peripheral excavations which housed the nerve terminal boutons and exhibited internally the secondary synaptic clefts present among the junctional folds of the sarcolemma. This study showed that some of the morphological changes demonstrated in other denervated striated skeletal muscles are not repeated at the same intensity or in the same temporal pattern in the rat diaphragm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of gamma radiation from Co-60 (2000 Gy) to attenuate the toxic effects of Bothrops jararacussu venom was investigated on mouse neuromuscular preparations in vitro. A comparative study between the effects of native and irradiated venoms was performed on both phrenic-diaphragm (PD) and extensor digitorum longus (EDL) preparations by means of myographic, biochemical and morphological techniques. Native venom (10 and 20 mug/ml) induced a concentration-dependent paralysis of both directly and indirectly evoked contractions on PD preparations. At 20 mug/ml, it also caused a pronounced myotoxic effect on the EDL muscle preparation that was characterized by an increase of creatine kinase release and by several morphological changes of this preparation. By contrast, irradiated venom, even at concentrations as high as 40 mug/ml, induced neither paralyzing nor myotoxic effects. It was concluded that Co-60 gamma radiation is able to abolish both the paralyzing and the myotoxic effects of B. jararacussu venom on the mouse neuromuscular junction. These findings support the hypothesis that gamma radiation could be an important toot to improve antisera production by reducing toxicity while preserving immunogenicity. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addressed the effects of nandrolone decanoate (ND) on contractile properties and muscle fiber characteristics of rats submitted to swimming. Male Wistar rats were grouped in sedentary (S), swimming (Sw), sedentary+ND (SND), and swimming+ND (SwND), six animals per group. ND (3 mg/kg) was injected (subcutaneously) 5 days/week, for 4 weeks. Swimming consisted of 60-min sessions (load 2%), 5 days/week, for 4 weeks. After this period, the sciatic nerve extensor digitorum longus (EDL) muscle was isolated for myographic recordings. Fatigue resistance was assessed by the percent (%) decline of 180 direct tetanic contractions (30 Hz). Safety margin of synaptic transmission was determined from the resistance to the blockade of indirectly evoked twitches (0.5 Hz) induced by pancuronium (5 to 9 x 10(-7) M). EDL muscles were also submitted to histological and histochemical analysis (haematoxylin-eosin (HE); nicotinamide adenine dinucleotide-tetrazolium reductase (NADH-TR)). Significant differences were detected by two-way ANOVA (p<0.05). ND did not change body mass, fatigue resistance or kinetic properties of indirect twitches in either sedentary or swimming rats. In contrast, ND reduced the safety margin of synaptic transmission in sedentary animals (SND=53.3+/-4.7% vs. S=75.7+/-2.0%), but did not affect the safety margin in the swimming rats (SwND=75.81+/-3.1% vs. Sw=71.0+/-4.0%). No significant difference in fiber type proportions or diameters was observed in EDL muscle of any experimental group. These results indicate that ND does not act as an ergogenic reinforcement in rats submitted to 4 weeks of swimming. on the other hand, this study revealed an important toxic effect of ND, that it reduces the safety margin of synaptic transmission in sedentary animals. Such an effect is masked when associated with physical exercise. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The loss of skeletal muscle mass is believed to be the dominant reason for reduced strength in aging humans. The purpose of this investigation was to gain some information as to why skeletal muscles lose mass as we age. Since nervous system innervation is essential for skeletal muscle fiber viability, incomplete regional reinnervation during normal synaptic junction turnover has been hypothesized to result in selective muscle fiber loss. Examined here was the age-related association in skeletal muscle between atrophy and the expression of mRNAs encoding the γ- and ϵ-subunits of the nicotinic acetylcholine receptor, myogenin, and muscle specific receptor kinase (MuSK). Gastrocnemius and biceps brachii muscles were collected from young (2 month), adult (18 month), and old (31 month) Fischer 344 cross brown Norway F 1 male rats. In the gastrocnemius, muscles of old vs. young and adult rats, lower muscle mass was accompanied by significantly elevated acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels. In contrast, the biceps brachii muscle in the same animals exhibited neither atrophy nor a change in acetylcholine receptor γ-subunit, myogenin, or MuSK mRNA levels. Expression of the acetylcholine receptor ϵ-subunit mRNA did not change with age in either gastrocnemius or biceps brachii muscles. Since acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels are upregulated in surgically denervated skeletal muscles of young rats while expression of the acetylcholine receptor ϵ-subunit does not change, the findings of the current investigation suggest that a select fiber population within atrophied skeletal muscles of old rats may be in a denervated-like state. I speculate that increases in γ-subunit, myogenin, and MuSK mRNA levels in atrophied muscles of old rats are compensatory responses to nerve terminal retraction. Indeed, a prolongation of denervation in these muscle fibers would subsequently result in their atrophy and death, ultimately leading to a decline in the number of force generating elements present in the muscle. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.